Контрольная работа по алгебре 11 класс за 3 четверть с ответами
Вариант 1
Найдите производную функции: а) 3х2 - б) в) г)
Найдите значение производной функции f(x) = в точке х0 = 8.
Запишите уравнение касательной к графику функции f(x) = sin x – 3x + 2 в точке х0 = 0.
Найдите значения х, при которых значения производной функции f(x) = положительны.
Найдите точки графика функции f(x)= х3 – 3х2, в которых касательная к нему параллельна оси абсцисс.
Найдите производную функции f(x) = .
Вариант 2
Найдите производную функции: а) 2х3 - б) в) г)
Найдите значение производной функции f(x) = в точке х0 = .
Запишите уравнение касательной к графику функции f(x) = 4x - sin x + 1 в точке х0 = 0.
Найдите значения х, при которых значения производной функции f(x) = отрицательны.
Найдите точки графика функции f(x)= х3 + 3х2, в которых касательная к нему параллельна оси абсцисс.
Найдите производную функции f(x) = cos .
Найдите производную функции: а) 3х2 - б) в) г)
Найдите значение производной функции f(x) = в точке х0 = 8.
Запишите уравнение касательной к графику функции f(x) = sin x – 3x + 2 в точке х0 = 0.
Найдите значения х, при которых значения производной функции f(x) = положительны.
Найдите точки графика функции f(x)= х3 – 3х2, в которых касательная к нему параллельна оси абсцисс.
Найдите производную функции f(x) = .
Вариант 2
Найдите производную функции: а) 2х3 - б) в) г)
Найдите значение производной функции f(x) = в точке х0 = .
Запишите уравнение касательной к графику функции f(x) = 4x - sin x + 1 в точке х0 = 0.
Найдите значения х, при которых значения производной функции f(x) = отрицательны.
Найдите точки графика функции f(x)= х3 + 3х2, в которых касательная к нему параллельна оси абсцисс.
Найдите производную функции f(x) = cos .
Просмотров: 329 / Дата: 18.01.2025
Комментариев 0